The test strips enclosed have 10 parameters on each strip. The 2 pads which relate to the detection of diabetes are detailed directly below. The other remaining 8 test pad results are explained in brief at the end of the instructions.

INTRODUCTION
This diabetes test detects the presence of glucose (sugar) and ketones in your urine. If you obtain an abnormal result with the first strip, repeat the test using another strip.

WHAT IS DIABETES?
Diabetes Mellitus as it is known in full, is a common health condition where there is too much glucose in the blood. Glucose is a type of sugar that comes from carbohydrates in the food we eat and is also produced by the liver and is our body’s main source of energy. Most of the food we eat is broken down into glucose. The level of glucose in the blood is regulated by a hormone called insulin. Insulin stimulates cells to absorb enough glucose from the blood for the energy they need. Insulin also stimulates the liver to absorb and store any glucose that’s left over. People who have diabetes either do not produce enough insulin or the insulin they do produce does not work properly, so the glucose builds up in their blood instead of moving into the cells.

WHAT ARE KETONES?
Usually our body will burn the food we eat into sugar (glucose) and this is used for energy. But if you have diabetes, you may not have enough insulin for the sugar in your bloodstream to be used for fuel. As a result the body will use fat instead and as the fat is broken down, substances called ketones are produced normally by the liver and are usually metabolised so very little or none will be detected in urine or blood. However, when Ketones are present in the urine this can be an indicator of diabetes. Ketones can also be present if your body is starved of food and so may be present first thing in the morning or if you have been on a strict diet or have been suffering with sickness.

THE 2 MAIN TYPES OF DIABETES:
Type 1, also known as insulin dependent diabetes, develops when the insulin producing cells in the pancreas have been destroyed and the person stops producing their own insulin. This may be due to a combination of hereditary and environmental factors, but it could also be as a result of damage to the pancreas from a virus. It generally affects children and young adults of both sexes and will usually become apparent before the age of 40. Type 2, also known as non-insulin dependent diabetes, is the most common type of diabetes. Type 2 usually appears in older people (over 40) though as levels of obesity in the UK are rising, more and more younger people are being diagnosed. Type 2 happens when the pancreas fails to produce enough insulin to completely control the levels of glucose in your blood, or when the body cannot use the insulin that it does produce properly.

WHY DO I NEED THIS TEST?
This test looks for the presence of glucose and ketones in urine and can help identify diabetes at an early stage, before the illness causes any symptoms. It is important to detect diabetes early on so that you can begin to have treatment and reduce the risk of complications.

PACK CONTENTS
1 or 2 Folls containing 1, 2 or 5 test strips
Comparison Chart
Instructions

WARNING AND PRECAUTIONS
For in vitro diagnostic use only.
All test strips within each foil will need to be used immediately once that foil has been opened.

STORAGE AND HANDLING
Store in a cool, dry place at temperatures between 2°C – 30°C. Do not store the strips in a refrigerator or freezer. Store away from moisture and light. As long as the foil pouch has not been opened, the product is stable up to the expiry date printed on the foil. Do not touch test areas of urine reagent strips. Do not open foil pouch until ready to use. All test strips will need to be used immediately once the foil has been opened.

Disconnecting or darkening of the test pads may indicate deterioration. If this is evident, or if test results are questionable or inconsistent with expected finding, confirm that the product is within its expiration date and is reacting properly using known negative and positive control materials. Do not use after the expiry date.

SPECIMEN COLLECTION AND PREPARATION
Collect urine in a clean, dry container that allows complete immersion of all the fields on the test strip. Do not add preservatives. Test the specimen as soon as possible, with the sample well mixed but not centrifuged. The use of fresh morning urine is recommended for optimal nitrite tests, as well as for the valid determination of bilirubin and urobilinogen, since these compounds are unstable when exposed to light. If immediate testing is not possible, the sample should be stored in the refrigerator, but not frozen, and then brought to room temperature before used in the test. Unpreserved urine at room temperature may undergo pH changes due to microbial proliferation, which may interfere with protein determination. If clearly voided specimens are not collected from females, positive results for leukocytes may be found due to contamination from outside the urinary tract. Skin cleansers containing chlorhexidine may affect protein test results if specimen contamination occurs.

VISUAL TEST PROCEDURE
The procedure must be followed exactly to achieve reliable results. Do not compare strips with colour chart before the strip is dipped in urine.
1) Dip the strip into the urine up to the test area, ensuring all reagent pads are fully immersed. Dip for no more than two seconds.
2) Draw the edge of the strip along the brim of the vessel to remove excess urine, be careful not to allow the test areas to touch the brim of the vessel. Turn the strip on its side and tap once on a piece of absorbent material to remove any remaining urine; excessive urine on the strip may cause the interaction of chemicals between adjacent reagent pads, so that an incorrect result may occur.
3) Compare the colours of the reagent pads after exactly 60 seconds (Leukocytes after 90–120 seconds) with the colour chart on the vial label under good light. While comparing, keep the strip horizontal to prevent possible mixing of chemicals when excessive urine is present.

RESULTS:
Test results should be read at 60 seconds but no longer than 2 minutes as this could give an inaccurate reading.

Ketones Result: Ketones are not usually detected in the urine unless you have been starving, dieting or sick so their presence would need further investigation. The results comparison chart for ketones shows a line of 6 colours starting with a negative result and then five positive ranges which get darker the higher the levels detected. The readings read from 5 mg/dl (0.5mmol/L), 15 mg/dl (1.5mmol/L), 40 mg/dl (3.9mmol/L), 80 mg/dl (8.8mmol/L) and lastly 160 mg/dl (16.6mmol/L). These are indicated by pale pink through to deep burgundy.

Glucose Result: The kidney normally excretes small amounts of glucose but if your levels are 100mg/dl (6mmol/L UK reading) or higher this is considered abnormal. The results comparison chart for glucose shows a line of 6 colours starting with a negative result and then five positive ranges which get darker the higher the levels detected. The readings read from 100mg/dl (5.5mmol/L), 250mg/dl (14mmol/L), 500mg/dl (28mmol/L), 1000mg/dl (55mmol/L) and lastly 2000mg/dl (111mmol/L). These are indicated by pale blue through to dark brown.

Compare the strip to the colour comparison chart. Compare each test individually, and if the colour pad on the strip is the same colour as the negative reading on the comparison chart then no glucose or ketones have been detected in your urine.
LIMITATIONS OF PROCEDURE

As with all laboratory tests, definitive diagnostic or therapeutic decisions should not be based on any single result. Substances that cause abnormal urine colour may affect the readability of test pads in urinalysis reagent strips.

Nitrile: Ascorbic acid (>30 mg/dL) may cause false negative result with low level of nitrite containing (<0.03 mg/L) urine. The negative result does not always mean that the patient is free from bacteriuria. Pink spots or pink edges should not be interpreted as a positive result. False negative result may occur when urinary tract infections are caused by organisms which do not contain nitrate reductase; when urine has not been retained in the bladder long enough (four hours or more) for reduction of nitrite to nitric oxide; or when dietary nitrate is absent.

Protein: False positive results may be found in strongly basic urine (pH 9). The interpretation of results is also difficult in turbid urine specimens.

Urobilinogen: The absence of urobilinogen in the specimen cannot be determined. The test area will react with interfering substances known to react with Ehrlich’s reagent, such as p-aminoacetoxylic acid. Drugs containing azoxantran may give a masking golden colour. The test is not reliable method for the detection of porphobilinogen.

Blood: Elevated specific gravity or protein in urine may reduce the reactivity of the blood test portion. Microbial peroxidase associated with urinary tract infection may cause false positive results. Ascorbic acid concentrations (>30 mg/dL) may cause false negatives at the low level of blood.

Specific Gravity (SG): High-buffered alkaline urine may cause diminished result, whereas high-buffered acidic urine may cause slightly elevated result.

Bilirubin: Metabolites of drugs, such as pyridium and selenium, which give a colabour at low pH, may cause false positives. Indigo (iodoxyl sulphate) can produce a yellow-orange to red pink response, which may interfere with the interpretation of negative or positive bilirubin readings. Ascorbic acid (>30 mg/dL) may cause false negative result.

Glucose: High SG (>1.020) with high pH and ascorbic acid (more than 40 mg/dL) may cause a false negative for specimen containing small amount of glucose (<100 mg/dL). Reactivity may be influenced by urine pH and temperature.

Ketones: Positive results (trace or less) may occur with highly pigmented urine specimens or those containing large amounts of levodopa metabolites. Some high SG and low pH may give false positive result. Phenolphthalein may cause false positive result.

P: If the excessive urine is remain on the strip because of improper test procedure, it is possible that the acidic buffer in protein portion comes out and affects the pH portion, then pH result may be decreased than the actual. This phenomenon is called “run-over effect.”

Leukocytes: The test result may not always be consistent with the leukocyte cell number by the microscopic examination. High concentration of glucose, high specific gravity, high level of albumin, high concentration of formaldehyde or presence of blood may cause decreased test results. False positive results may occasionally be due to contamination of the specimen by vaginal discharge.

PERFORMANCE CHARACTERISTICS

Performance characteristics are based on clinical and analytical studies and do depend upon several factors: the variability of colour perception; the presence or absence of inhibitory and matrix factors typically found in urine; and the laboratory conditions in which the product is used (e.g., lighting, temperature and humidity). Each colour block represents a range of values. Because of specimen and reading variability, specimens with analyte concentrations that fall between normal levels may give results at either level. Results will usually be within one level of the true concentration. The following list shows the generally detectable levels of the analytes in controlled urines; however, because of the inherent variability of clinical urines, lesser concentrations may be detected under certain conditions.

TEST PAD AND SENSITIVITY (SPECIFICITY)

<table>
<thead>
<tr>
<th>Glucose</th>
<th>75-120 mg/dL</th>
<th>(Glucose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>15-30 mg/dL</td>
<td>(albumin)</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>0.6-1.0 mg/dL</td>
<td>(Bilirubin)</td>
</tr>
<tr>
<td>Nitrite</td>
<td>0.05-0.1 mg/dL</td>
<td>(Nitrite ion)</td>
</tr>
<tr>
<td>Ketones</td>
<td>5-100 mg/dL</td>
<td>(Acetoacetic acid)</td>
</tr>
<tr>
<td>Leukocytes</td>
<td>25-200 WBC/mL (intra- and mixed WBCs)</td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td>15-150 WBC/mL (hemoglobin)</td>
<td></td>
</tr>
</tbody>
</table>

NOTES ON SYMBOLS

- **Number of test strips:**
 - **Do not reuse:**
 - **Intra laboratory:**
 - **Not for sale:**
 - **Consult instructions for use:**
 - **Keep away from sunlight:**
 - **Use by / Expiry Date:**

DIETO, Ltd. 396UL, Gornosjo, 4-1, Byforsa, Gotland, Sweden

Dongsang Acuprine
1 The Forest United, Hennock Road East, Dexter, EX2 8FU, UK

Distributed by Home Health UK Ltd.
Tel: +44 (0)1923 711511, Website: www.homehealthuk.com
Email: info@homehealthuk.com

Ver 1.4.1.2017